
Abstract—Software Defined Networking (SDN) and Network 

Function Virtualization (NFV) are two transformative 

technologies that offer distinct benefits. SDN virtualizes the 

control plane by separating it from the data plane, while NFV 

virtualizes the data plane by moving network functions from 

hardware and implementing them in software. Therefore, 

combining SDN and NFV can fully exploit the benefits of both 

technologies. As Programming Protocol-independent Packet 

Processors (P4) become popular due to its flexibility, traditional 

SDN switches are being replaced by P4 switches. In the P4+NFV 

architecture, network functions can be provided in both P4 

switches (PNF) and NFV servers (VNF). However, to minimize 

packet delay, the offloading problem between P4 switches and 

NFV needs to be addressed. The novelty of our paper lies in 

investigating the offloading problem and evaluating the impact of 

employing multiple VNFs with varying computing capacities 

within the P4+NFV architecture. We also use M/M/1 queuing 

theory to derive the average packet delay and propose an 

optimization solution based on gradient descent to find out the 

optimal offloading probabilities of various VNF servers. Results 

show that optimal offloading from P4 switch to multiple VNFs can 

reduce the average packet delay from 4.76% to 40.02%.  

Index Terms—software defined networking, network function 

virtualization, virtual network functions, optimal probability. 

I. INTRODUCTION

Traditional network architectures often encounter challenges 

when updating hardware devices like routers and switches due 

to their inflexible nature. Nevertheless, SDN provides a 

promising solution to this issue. SDN fundamentally separates 

the control plane from the data plane, entrusting a controller 

with decision-making regarding the optimal data path from 

source to destination within the control plane. In contrast, the 

switches in the data plane simply forward packets based on the 

controller’s decisions [1]. SDN virtualizes the network's control 

plane, presenting a more flexible and dynamic approach to 

network management. 

On the contrary, network functions (NFs) such as deep packet 

inspection and load balancing are traditionally provided 
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through specialized hardware integrated with software. 

However, this hardware can often prove costly and 

cumbersome to update. In response to these challenges, a new 

technology known as Network Function Virtualization (NFV) 

has emerged [2]. NFV accomplishes this by virtualizing these 

functions moving them from dedicated hardware to software 

installed on readily available server [3]. This approach enables 

NFs to be implemented with increased flexibility and cost-

effectiveness, fostering the creation of service function chaining 

[4]. NFV virtualizes the data plane and creates modular 

components that can be interconnected to support various NFs. 

In contrast, SDN virtualizes the control plane. Therefore, 

integrating SDN with NFV can provide an excellent 

architecture that combines the advantages of both technologies. 

 In recent years, there have been significant advancements in 

programmable switch chips, enabling the processing of packets 

at high speeds similar to fixed-function switches. This progress 

has given rise to Programming Protocol-Independent Packet 

Processors (P4), a technology that utilizes a domain-specific 

programming language in conjunction with an SDN controller 

to achieve protocol-independence, target-independence, and 

field configuration [5]. P4 empowers programmers to specify 

recognized input packet headers, define map-action tables and 

processing algorithms. Furthermore, P4's programmability 

equips it to handle certain network functions. 

Due to the advantages offered by P4 switches over traditional 

switches, they are experiencing growing demand. P4 switches 

may soon become the preferred choice in networking. 

Consequently, the architecture that combines SDN with NFV 

may shift from traditional switches to P4 switches, resulting in 

the integration of P4 switches and NFV (referred to as 

P4+NFV). In the P4+NFV architecture, NFs can be provided in 

both P4 switches and NFV. Therefore, an important 

consideration involves determining the appropriate allocation 

of packets, deciding which ones should be forwarded to NFV 

for Virtualized Network Functions (VNFs), and which should 

remain within P4 switches for Physical Network Functions 

(PNFs). Addressing this offloading problem is crucial for 

creating more flexible, scalable, resilient, and cost-efficient 

network architectures while reducing average packet delay. 

In prior research study, He et al. [6] proposed a hybrid 

architecture that combines P4 switches with NFV to achieve 

greater flexibility and speed, meeting the demands of modern 

network bandwidth requirements. Makara et al. [7] analyzed the 

impact of offloading probability (from P4 switches to NFV) on
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various performance metrics, using Brent's method [8]. While 

some recent studies [6-7] have explored the combination of P4  

switches with NFV, none has delved into investigating the 

performance gains of this hybrid architecture when employing 

multiple VNFs with varying computing capacities for different 

VNF queues. This novel aspect forms the foundation of our 

work. We employ multiple VNFs to compare their optimal 

offloading probabilities, enhancing data processing efficiency 

and resulting in a significant reduction in average packet delay. 

Furthermore, we evaluate the performance metric of packets 

requiring multiple VNFs using an M/M/1 queuing model in the 

P4+NFV architecture. It is important to note that the 

conventional approach typically employs the P4 switch as the 

default data plane, offering the option to offload traffic to VNF 

when congestion occurs. However, an alternative perspective 

suggests considering the VNF as the default data plane, with 

traffic offloaded to the P4 switch as needed. This alternative 

viewpoint argues that packets requiring network functions 

should be directed to VNF by default, while the P4 switch 

should only handle traffic when the VNF is inactive. 

This paper makes several contributions, including: (i) 

developing an analytical model using an M/M/1 queuing model 

to analyze the P4+NFV architecture with multiple VNF servers, 

(ii) proposing an algorithm to determine the optimal offloading 

probabilities from P4 switch to multiple VNFs, (iii) 

investigating different VNF computing capacities for different 

VNF servers to determine their optimal offloading probabilities, 

and (iv) evaluating the offloading from P4 to multiple VNFs in 

terms of various performance metrics under different parameter 

settings.  

The rest of the paper is organized as follows. Section II 

provides an overview of previous related works. Section III 

presents the system model of the P4+NFV architecture utilizing 

multiple VNFs. Section IV derives the average packet delay 

analytically and describes the algorithm for finding the optimal 

offloading probabilities. Section V presents analytical and 

simulation results to demonstrate the performance of using 

multiple VNFs with varying VNF computing capacities. 

Finally, Section VI concludes the paper. 

II. RELATED WORKS 

There have been a few studies on integrating P4-based 

programmable switches with NFV. Although some previous 

studies have analyzed the performance of SDN/NFV, there is 

limited investigation into the performance benefits of the 

P4+NFV architecture using an M/M/1 queuing model with 

multiple VNFs employing different service rates for distinct 

VNF queues. Table I summarizes the key findings from 

previous studies across four categories: SDN (traditional 

switch), multiple VNFs, SDN (traditional switch)+NFV, and 

SDN (P4 switch)+NFV. 

1) SDN (traditional switch): Raychev et al. [9] developed an 

M/M/1 queuing model for both SDN switches and controllers 

to manage data traffic. Sarkar et al. [10] proposed an 

OpenFlow-based SDN switch using M/M/1 queuing theory and 

exponential models. Nweke et al. [11] employed an M/M/1 

queuing model to analyze the consequences of adversarial flow 

in an SDN infrastructure. Goto et al. [12] introduced a queuing 

model for OpenFlow-based SDN switches, focusing on error 

minimization and validation in a test environment. Singh et al. 

conducted studies on the trade-offs between software and 

hardware switches [13] and the encapsulation versus internal 

buffer usage [14] in UDP using continuous-time Markov 

chains. However, none of these previous studies [9-14] have 

specifically addressed the performance of the P4+NFV hybrid 

architecture concerning multiple VNFs with varying service 

rates for different VNF queues. Furthermore, this paper argues 

that software and hardware are not competitors but can be 

effectively integrated. 

2) Multiple VNFs based techniques: Nikolai et al. [15] 

analyzed the performance improvement of x86 hosts with 

multiple VNFs, highlighting significant throughput differences 

between single and multiple VNF systems. Quang et al. [16] 

formulated an optimization problem using integer linear 

programming (ILP) and introduced a heuristic algorithm for the 

allocation of multiple virtual network function-forwarding 

graphs. Yamada et al. [17] introduced Service Function Chain 

(SFC) to address challenges associated with the utilization of 

multiple VNFs. Rossem et al. [18] developed an efficient 

method for VNF chain deployment to interconnect multiple 

VNFs, reducing iterations and streamlining the time-consuming 

VNF chain validation process. However, none of these studies 

[15-18] have examined the use of multiple VNFs with different 

computing capacities in a P4+NFV-based hybrid architecture or 

compared their optimal offloading probabilities. 

3) Combination of SDN (traditional switch) and NFV based 

techniques: Ramya et al. [19] developed a traffic management 

model to predict the optimal number of controllers to deploy 

within SDN+NFV architectures. Fahmin et al. [20] introduced 

a hybrid architecture that combines SDN and NFV, 

investigating the optimal placement of NFV in relation to the 

controller. They employed M/M/1 queuing theory to calculate 

average packet delay. Billingsley et al. [21] proposed a model 

for analyzing the performance of Mobile Cloud Computing 

within SDN+NFV architectures using M/M/1 queuing theory. 

Surantha et al. [22] improved the performance and functionality 

of NFV devices by integrating them with SDN, replacing the 

standard virtual switch with a data plane development kit, and 

implementing single-root I/O virtualization technology. 

4) Combination of SDN (P4 switch) and NFV based 

techniques: He et al. [6] were the first to propose a P4 switch 

and NFV-based hybrid architecture that offers increased 

flexibility and faster speed. Therefore, this hybrid architecture 

is better suited to current network bandwidth requirements.  

Paolucci et al. [23] introduced a method for integrating P4 

Data Plane Programmability (DPP) into SDN/NFV. This 

method enhances flexibility in a range of applications, 

including 5G networks, IoT, cyber security, and traffic 

engineering. Ji et al. [24] investigated a high-performance event 

system combining NFV with a P4 switch capable of supporting 

multiple function chains at line rate and reducing packet delay. 

Osiński et al. [25] utilized the BMv2 software switch and 

exposure framework (DPPx) to propose a P4-based Data Plane 

Programmability model improving the flexibility of NFV  
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TABLE I 
SUMMARY OF RELATED WORKS 

 

services. Additionally, the P4+NFV-based hybrid architecture 

has shown potential in enhancing the performance of network 

interface cards (NICs). Mohammad et al. [26] introduced a 

Mixed Integer Linear Programming (MILP) based optimization 

method using P4+NFV architecture for SmartNICs, effectively 

reducing packet delay and increasing flexibility. Zhang et al. 

[27] conducted a study on the performance gain of NFV in 

offloading traffic between physical NICs and VNFs. 

However, no P4+NFV architecture has yet been developed to 

determine the optimal offloading probability to reduce packet 

delay when using multiple VNFs with different computing 

capacities for different VNF queues. Makara et al. [7] studied 

the impact of offloading probability on various performance 

metrics using Brent's method [8]. They used a controller to 

decide the route and required operation of a specific packet. In 

contrast, our proposed approach analyzes the impact of 

offloading probabilities in the context of using multiple VNFs, 

entirely eliminating the need for a controller. Dependency on a 

central controller might introduce a single point of failure. 

Removing the controller could enhance system robustness by 

distributing decision-making processes.  Without a controller, 

the architecture may be simpler and more streamlined.  

Our work is most relevant to the category of SDN (P4 

switch)+NFV. Previous studies have not investigated 

performance benefits of this architecture when using multiple 

VNFs with different computing capacities. Existing studies 

have focused on SDN (traditional switch), multiple VNFs, 

SDN+NFV, and SDN (P4 switch)+NFV separately.  Some 

studies have analyzed aspects such as load balancing, VNF 

placement, and performance improvements. However, none of 

these studies have specifically investigated the performance of 

the P4+NFV architecture when using multiple VNFs with  

 

 

different computing capacities for distinct VNF queues. This 

research aims to fill this gap and contribute to a better 

understanding of the optimal offloading probabilities and 

performance gains in the P4+NFV architecture with multiple 

VNFs. 

III. SYSTEM MODEL 

 In our system model, when traffic reaches a switch and 

requires a NF, it has two possible paths. It can either be 

processed within the P4 switch, referred to as a PNF (Physical 

Network Function), or it can be routed to the NFV located in 

the data center. If the packets are sent to the VNF, they will 

return to the switch before being directed to their final 

destination. 

A. System Model 

Fig. 1 shows a network model of a programmable P4-based 

switch with multiple VNFs. To calculate the average packet 

delay, we have used the M/M/1 queuing model. The network 

model consists of several queues, including a switch processing 

(SP) queue, a PNF queue, a switch communication (SC) queue, 

and multiple VNFs queues: 

• A switch processing (SP) queue: The SP queue is 

responsible for processing all packets, including new 

ones (shown in black) and those that have visited the 

VNF and re-entered the switch (shown in blue). 

• A PNF queue: The PNF queue processes packets that 

require a network function inside the switch (shown in 

red). 

• A switch communication (SC) queues: The SC queue 

forwards packets to their next hop, including newly 

arriving packets (shown in black) and those that require 

processing by VNFs (shown in blue). 

 

Category 

 

References 

NF queues used?  

Characteristics # of 
VNFs 

PNF 

SDN 
(traditional 

switch) 

[9] 0 No Developed a model for both SDN switch and controller using M/M/1 theory 

[10] 0 No Developed an OpenFlow-based model for both SDN switch using M/M/1 theory 

[11] 0 No Adversarial flow using M/M/1 theory 

[12] 0 No Priority based solution with Markov Chain 2D MC (HPQ,LPQ) 

[13] 0 No Prioritization in 2D MC (HPQ, LPQ) and software vs. hardware switches 

[14] 0 No Prioritization in 4D MC (internal buffer, HPQ, LPQ, hardware) and encapsulation vs. internal buffer 

Multiple 

VNFs  

[15] N No Performance gain of an x86 host running multiple VNFs 

[16] N No A heuristic algorithm for allocating multiple VNFs 

[17] N No Introduced SFC which is comprised of multiple VNFs 

[18] N No VNF chain deployment for connecting multiple VNFs 

SDN 

(traditional 
switch)+NFV 

[19] 1 No Traffic management model to predict the optimal number of controllers 

[20] 1 No Combination of SDN and NFV using M/M/1 

[21] 1 No Mobile Cloud Computing using M/M/1 theory 

[22] 1 No Replaced the standard virtual switch with a data plane development kit  

SDN (P4 

switch)+NFV 

[6] 1 Yes Fundamental modeling of P4+NFV architecture 

[23] 1 No 5G SDN/NFV Edge with P4 switch 

[24] 1 No NFV framework with event system based on P4 switches 

[25] 1 Yes P4-based Data Plane Programmability and Exposure framework (DPPx) 

[26] 1 Yes MILP based method for boosting capacity in SmartNICs 

[27] 1 Yes Seven state-of-the-art software switches for offloading NFV traffic between NICs and VNFs 

[7] 1 Yes Impact of offloading from P4 switches to NFV using Brent’s method 

Our 
proposed 

model 

N Yes Combination of P4 and NFV using multiple VNFs and M/M/1 queuing theory 
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Fig. 1.  Queuing model of a programmable switch using multiple VNF 

servers. 

 

• Multiple VNFs queues: Lastly, packets that require VNF 

functions (shown in blue) are queued in the multiple 

VNFs queues, which are then processed and sent back to 

the switch. 

    Based on the network model shown in Fig. 1, when new 

packets arrive at the switch (indicated by the incoming arrow 

on the left), they are first processed by the P4 switch. The switch 

processing module then checks whether the packet requires a 

NF or not. If it does, the module decides whether to process the 

packet in the P4 switch itself (PNF) or offload it to one of the 

multiple VNFs based on their respective offloading 

probabilities. Following this decision, the packets receive the 

necessary VNF services. After that, they re-enter the switch and 

are directed to their destination by the switch communication 

module. 

     The model makes some assumptions, including (1) Packet 

arrivals at the switch follow a Poisson process, (2) The size of 

each queue is infinite, (3) NF is required only once, (4) There 

are multiple VNF queues, and there is no separation of new 

packets and those that have already undergone NF in the input 

queue.  

B. Notations Used in the Analysis 

   Table II provides a list of notations used in the analysis. In the 

system model, the SP queue processes incoming packets, while 

the SC queue forwards packets to their next hop. Therefore, the 

processing capacities of SP queue and SC queue are denoted as 

cSP and cSC, respectively. Similarly, processing capacities or 

service rates of the PNF queue and at the 𝑖𝑡ℎ VNF queues are 

denoted as cPNF and 𝑐𝑖
𝑉𝑁𝐹, respectively. The packets arrive at 

the P4 switch at a rate λ. The number of VNF queues used in 

the analysis is represented by k. In a typical OpenFlow network, 

the probability of requiring network function is assumed to be 

50% and is denoted as 𝑝𝑁 . Additionally, the probability of 

going to the 𝑖𝑡ℎ VNF queue is represented by 𝑝𝑖
𝑉𝑁𝐹. Our goal is 

to determine the optimal offloading probabilities to the VNF 

queues, denoted as 𝑝𝑖
∗𝑉𝑁𝐹 . For mathematical analysis, three 

types of packets are considered: packets that require a network 

function at the PNF queue, packets that require a network 

function at the VNF queue, and packets that do not require any 

network function (discussed in section IV). The corresponding 

packet delays for these types are represented as 𝑑𝑃𝑁𝐹 , 𝑑𝑉𝑁𝐹 , 

and 𝑑𝑂𝑁𝐹 , respectively. To derive the packet delay for each 

type, we need to calculate packet delay at the SP queue, SC 

queue, PNF queue, and 𝑖𝑡ℎ  VNF queue. Thus, we use the 

notations 𝑡𝑆𝑃 , 𝑡𝑆𝐶 , 𝑡𝑃𝑁𝐹 , and  𝑡𝑖
𝑉𝑁𝐹  to represent the average 

packet delay at these respective stages. The total average packet 

delay for the entire architecture is denoted as D. Finally,  𝐷𝑖
𝑆𝑉 

represents the fixed propagation delay at the 𝑖𝑡ℎ VNF queue. 

 
TABLE II 

NOTATIONS USED IN THE ANALYSIS 
 

Category Symbol Parameter Name 

Capacity 

𝑐𝑆𝑃 Switch processing rate 

𝑐𝑆𝐶  Switch communication rate 

𝑐𝑃𝑁𝐹 Service rate for the PNF queue 

𝑐𝑖
𝑉𝑁𝐹 

Service rate or computing capacity at the 

𝑖𝑡ℎ VNF queue 

Arrival rate λ Packet arrival rate 

Number of VNFs k Number of VNF queues 

Probability 
𝑝𝑁 Probability of requiring network function 

𝑝𝑖
𝑉𝑁𝐹 Probability of going to the 𝑖𝑡ℎ VNF queue 

Packet delay for 
three types of 

packets 

𝑑𝑃𝑁𝐹 
Packet delay for packets that require 

network function at PNF 

𝑑𝑉𝑁𝐹 
Packet delay for packets that require 

network function at VNF 

𝑑𝑂𝑁𝐹 
Packet delay for packets that do not 

require any network function 

Average packet 
delay at queues 

𝑡𝑆𝑃  Average packet delay at SP queue 

𝑡𝑆𝐶  Average packet delay at SC queue 

𝑡𝑃𝑁𝐹 Average packet delay at PNF queue 

 𝑡𝑖
𝑉𝑁𝐹 Average packet delay at 𝑖𝑡ℎ VNF queue 

Delay 
D Total average packet delay 

𝐷𝑖
𝑆𝑉 Fixed propagation delay at 𝑖𝑡ℎ VNF queue 

C. Problem Statement 

In this section, we provide a precise problem statement to 

guide our analysis and proposed solutions. 

Given:   

● Switch processing rate: cSP; 

● Switch Communication rate: cSC;  

• Switch computing capacity: cPNF; 

• VNF computing capacity at the 𝑖𝑡ℎ queue: 𝑐𝑖
𝑉𝑁𝐹; 

• Packet arrival rate: λ; 

• Probability of requiring network functions: pN; 

• Fixed propagation delay at the 𝑖𝑡ℎ VNF queue: 𝐷𝑖
𝑆𝑉;                     

• The number of VNFs: k 

Output:  

• Optimal probability of going to 𝑖𝑡ℎ VNF queue: 𝑝𝑖
∗𝑉𝑁𝐹 

Objective: 

• Minimize the average packet delay D. 

That is, the problem is to find the optimal 𝑝𝑖
𝑉𝑁𝐹 , denoted as 

𝑝𝑖
∗𝑉𝑁𝐹  using multiple VNFs. 

Constraint:  

• 0 ≤ 𝑝𝑖
∗𝑉𝑁𝐹 ≤ 1. 

IV. SOLUTION 

There are two main goals in this work: (1) to calculate the 

average packet delay in a P4-based switch with multiple VNFs 

using an M/M/1 queuing model, and (2) to propose an 

optimization algorithm that finds the optimal offloading 

probabilities for packets to go to multiple VNFs based on the 
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derived formulas for average packet delay. 

A. Average Packet Delay 

   We now calculate the total average packet delay of the 

proposed queuing network. To do so, we will first calculate the 

arrival and service rates at each queue shown in Fig. 1, and then 

use the M/M/1 theory to find the total average packet delay. We 

have listed the notations used in our analytical model in Table 

II. 

    For mathematical analysis, we have considered three types of 

packets:  

1) Packets that require network function at PNF,  

2) Packets that require network function at VNF,  

3) Packets that do not require any network function. 

Then, we calculate packet delay for all of these three types of 

packets. 

 

1) Packets that require network function at PNF: Packets 

destined for PNF pass through the SP queue, the PNF queue, 

and finally the SC queue." 

a) Delay at the SP queue: Initially, packets enter the switch 

at an arrival rate λ through the switch's processing queue SP. 

Additionally, packets that have undergone processing by 

multiple VNFs re-enter the switch via the SP queue at an 

arrival rate (𝜆𝑝𝑁 ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 ). Here, the probability of 

requiring network function is 𝑝𝑁  and total probability of 

going to all the VNF queues is ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 . Hence, arrival rate 

at SP queue denoted as 𝜆𝑆𝑃  can be calculated as 

 

                           𝜆𝑆𝑃 = 𝜆 + 𝜆𝑝𝑁 ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 .             (1) 

 

Using M/M/1 queuing theory, the average packet delay at the 

switch’s processing (SP) queue, denoted as 𝑡𝑆𝑃,  can be 

calculated as 

                                              

                                   𝑡𝑆𝑃=  
1

𝑐𝑆𝑃− 𝜆𝑆𝑃 ,                               (2)  

 

    where, 𝑐𝑆𝑃 is the service rate at the SP queue. 

 

b) Delay at the PNF queue: Some packets that require 

network function traverses the PNF queue. Therefore, the 

arrival rate at the PNF queue, denoted as 𝜆𝑃𝑁𝐹 , is expressed 

as 

                       𝜆𝑃𝑁𝐹 =  𝜆𝑝𝑁(1 − ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 ).                  (3) 

 

Using M/M/1 queuing theory, the average packet delay at the 

switch’s PNF queue can be calculated as 

 

                               𝑡𝑃𝑁𝐹 =  
1

𝑐𝑃𝑁𝐹−𝜆𝑃𝑁𝐹 
.                           (4)           

 

where, 𝑐𝑃𝑁𝐹  is the service rate at the PNF queue. 

 

c) Delay at the SC queue: Packets leave the system through 

the switch’s communication queue SC. Packets which does 

not require any network function at VNF, leave the switch 

using the SC queue with an arrival rate 𝜆 and packets which 

require VNF exit through the SC queue with an arrival rate 

(𝜆𝑝𝑁 ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 ) . Hence, the arrival rate at SC queue, 

denoted as 𝜆𝑆𝐶 , is expressed as 

 

                              𝜆𝑆𝐶 =  𝜆 + 𝜆𝑝𝑁 ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 .                   (5)  

    

If service rate at the SC queue is 𝑐𝑆𝐶 , then using M/M/1 

queuing theory the average packet delay at the switch’s 

communication (SC) queue can be calculated as  

 

                               𝑡𝑆𝐶 =  
1

𝑐𝑆𝐶 − 𝜆𝑆𝐶 .                                (6) 

 

So, packet delay for packets that require network function at 

PNF is  

                              𝑑𝑃𝑁𝐹 = (𝑡𝑆𝑃 + 𝑡𝑃𝑁𝐹 + 𝑡𝑆𝐶).               (7) 

 

2) Packets that require network function at VNF: Packets 

requiring VNFs traverse both the SP and SC queues twice and 

the VNF queues once. We have already provided calculations 

for the average packet delay at the SP and SC queues in (2) and 

(6). Consequently, our focus here is on deriving the equation for 

calculating the average packet delay specifically for the VNF 

queues. 

 

a) Delay at the VNF queues: Some packets that require 

network functions at VNFs first pass through the SP and SC 

queues before traversing the VNF queues. In this scenario, 

we make use of multiple VNFs. Hence, arrival rate for the i
th 

VNF queue, denoted as 𝜆𝑖
𝑉𝑁𝐹, is expressed as 

 

                                         𝜆𝑖
𝑉𝑁𝐹 = 𝜆𝑝𝑁𝑝𝑖

𝑉𝑁𝐹 .                           (8) 

 

As depicted in Fig. 1, packets that pass through the VNF queues 

must return to the switch, incurring a 2𝐷𝑖
𝑆𝑉 propagation delay. 

If the service rate at the ith VNF queue is 𝑐𝑖
𝑉𝑁𝐹, then, accounting 

for the fixed propagation delay, the average packet delay at the 

ith VNF queue is expressed as  

 

                       𝑡𝑖
𝑉𝑁𝐹 =

1

𝑐𝑖
𝑉𝑁𝐹− 𝜆𝑝𝑁𝑝𝑖

𝑉𝑁𝐹 + 2𝐷𝑖
𝑆𝑉.                     (9) 

 

Considering the total probability of going to all VNF queues as  

∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 , we can determine the delay for packets requiring 

network functions at VNFs as 

 

             𝑑𝑉𝑁𝐹 = ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 (2𝑡𝑆𝑃 + 𝑡𝑖
𝑉𝑁𝐹 +  2𝑡𝑆𝐶) .             (10) 

 

3) Packets that do not require any network function: Packets 

that do not require any network function pass through the SP 

and SC queues once. We have already provided calculations for 

the average packet delay at the SP and SC queues in (2) and (6), 

respectively. Consequently, the packet delay for packets not 

requiring any network function is determined as 

 

                              𝑑𝑂𝑁𝐹 = (𝑡𝑆𝑃 + 𝑡𝑆𝐶).                                 (11) 

 

Finally, from (7), (10) and (11), according to the ratios of 

packets we can obtain the average packet delay, as  

 

  𝐷 = 𝑝𝑁(1 − ∑ 𝑝
𝑖
𝑉𝑁𝐹𝐾

𝑖=1 )𝑑𝑃𝑁𝐹 + 𝑝𝑁𝑑𝑉𝑁𝐹 + (1 −  𝑝𝑁)𝑑𝑂𝑁𝐹 .     (12) 
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Subsequently, our proposed algorithm explores the state space 

to determine the optimal probabilities (𝑝𝑖
∗𝑉𝑁𝐹 ) for directing 

packets to the VNFs. This optimization aims to minimize the 

average packet delay as defined in (12). 

B. Algorithm for Finding Optimal Offloading Probabilities 

   Algorithm 1 is known as the P4 switch integrated with 

multiple VNFs (PINOpt) algorithm. PINOpt algorithm is 

designed to explore the state space and to return the optimal 

probabilities (𝑝𝑖
∗𝑉𝑁𝐹) for directing packets to VNFs, resulting in 

the minimum average packet delay. The algorithm employs a 

searching method based on the gradient descent algorithm.  

    To begin, we initialize 𝑝𝑖
𝑉𝑁𝐹  with the value of pINI (initial 

probability) divided by k (number of VNFs). Two parameters: 

step and stepRF, are used to control the searching range and 

gradually reduce the step size in each iteration, respectively. 

Four arrays: minscope[], maxscope[], optimal[], and x[], are 

declared. The PINOpt algorithm searches for optimal values of 

𝑝𝑖
𝑉𝑁𝐹  by generating a search space [minscope, maxscope] in 

each step. The min and max values are appended to the 

minscope[] and maxscope[] arrays, respectively, as shown in 

lines 8 to 12. Moving on to lines 13 to 21, the algorithm finds 

the optimal 𝑝𝑖
𝑉𝑁𝐹 values that correspond to the minimum delay 

within the defined search space. Initially, the values of 

minscope[] are copied to the optimal[] array. The minDelay 

(minimum delay) is initially set to Infinity. Then, we assign the 

ith value of the minscope[] array to the ith value of the x[] array. 

The while loop continues until the ith value of the x[] array 

exceeds the ith value of the minscope[] array. Within the loop, 

the DelayforProb(x[i]) function calculates the average packet 

delay based on the 𝑝𝑖
𝑉𝑁𝐹 values stored in the x[] array.  

    Equation (12) is used in the DelayforProb(x[i]) function to 

calculate the total average packet delay. The necessary 

parameter values for the Delay (total average packet delay) 

calculation are listed in Table III. During the calculation, if the 

computed Delay value is less than the current minDelay, 

minDelay is updated accordingly. The optimal 𝑝𝑖
𝑉𝑁𝐹  values, 

which correspond to the minimum delay, are stored in the 

optimal[] array. As we approach the solution, the x[] array is 

updated using the step value. This step value gradually 

decreases, controlled by the stepRF parameter. The required 

accuracy for finding the optimal 𝑝𝑖
𝑉𝑁𝐹 values is controlled by 

an input parameter 𝜀 (precision). 

 

V. ANALYTICAL AND SIMULATION RESULTS 

A. Designing a Custom Simulator   

    We have designed a custom simulator using the Ciw event 

simulation library [28-29] to validate our analytical model.  Fig. 

2 shows the flowchart of the simulation process. This simulator 

generates packets following the Poisson distribution and routes 

them through different queues based on specific probabilities.  

Poisson distribution is commonly used to model packet arrivals 

in network traffic. This distribution is often applied to events 

that occur randomly and independently over time. In our 

simulator, we have implemented a packet class and routing 

function to handle the packet routing process. We have assumed 

fixed packet sizes for reducing overhead associated with 

variable-sized packets. In variable-sized packet systems, the 

headers and metadata required for each packet can vary, 

potentially leading to increased overhead. Fixed-sized packets 

ensure a consistent overhead for each packet, promoting 

efficiency. The routing function assigns packets to specific 

queues based on probabilities, and we use an event queue to 

ensure sequential processing of queuing events. To evaluate 

system performance, we log each packet's path through the 

queues, enabling us to calculate average packet delay. We plan 

to analyze this data to optimize the probabilities for sending 

packets to VNF queues from the P4 switch, with the goal of 

minimizing average packet delay. By integrating our analytical 

model with simulation results from the custom simulator, we 

can comprehensively understand the system's behavior and 

validate our proposed approach's effectiveness. 
 

 

B. Parameter Settings 

Table III presents the baseline parameters used in both the 

analysis and simulation. In a typical OpenFlow network, the 

probability of requiring a network function (pN ) is assumed to 

be 50%. The VNF service rate ( 𝑐1
𝑉𝑁𝐹 ) is set to 95,000 

packets/sec, representing a low VNF computing capacity [20]. 

The packet arrival rate (𝜆) is 125,000 packets/sec [30]. To 

examine the impact of varying VNF service rates on 

performance, we consider a high capacity of 950,000 

packets/sec for 𝑐2
𝑉𝑁𝐹  and a very high capacity of 9,500,000 

packets/sec for 𝑐3
𝑉𝑁𝐹. The switch communication rate (cSC) is 

fixed at 1 Gbps (625,000 packets/sec), while the switch 

processing rate (cSP) is set at 12,500,000 packets/sec, as 

indicated by previous studies [30-31]. Each simulation is 

repeated 100 times, and the average values of the metrics are 

recorded. 

Algorithm 1: PINOpt for finding optimal 𝒑𝒊
𝑽𝑵𝑭 values 

Input:  𝜺 , pINI , stepRF, k 

Output: 𝒑𝟏
𝑽𝑵𝑭,  𝒑𝟐

𝑽𝑵𝑭, … , 𝒑𝒌
𝑽𝑵𝑭 

 

1  step = pINI / stepRF 

2  minscope=[] 

3  maxscope=[] 

4  𝒐𝒑𝒕𝒊𝒎𝒂𝒍=[] 

5   x = [] 

6  while  i ≤ k : do 

7          𝒑𝒊
𝑽𝑵𝑭 = pINI/k 

8          while ( step ≥ 𝛆 ) : do 

9                 min = max [0, 𝒑𝒊
𝑽𝑵𝑭 - (step×stepRF)] 

10               minscope.append (min) 

11               max = min [1, 𝒑𝒊
𝑽𝑵𝑭 + (step×stepRF)] 

12               maxscope.append (max) 

    

13                𝒐𝒑𝒕𝒊𝒎𝒂𝒍[𝒊]= minscope[i] 

14                minDelay = ∞  

15                 x [i] = minscope[i] 

16                   for i in range (len(x)):   

17                     while 𝒙 [𝒊] ≤ 𝒎𝒂𝒙𝒔𝒄𝒐𝒑𝒆[𝒊]: do  

18                              Delay = DelayforProb(x[i])  

                                             /* Eqn. (12) according to x[i] 

19                              if (Delay < minDelay): then  

20                                  minDelay = Delay  

21                                  𝒐𝒑𝒕𝒊𝒎𝒂𝒍[𝒊]= x[i] 

22                             𝒙[𝒊] + = step      

23                      𝒑𝒊
𝑽𝑵𝑭=𝒐𝒑𝒕𝒊𝒎𝒂𝒍[𝒊] 

24                 step = step / stepRF  

25         return 𝒑𝒊
𝑽𝑵𝑭   

26     i=i+1 

27    end 
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     Initially, we demonstrate the impact of 𝑝𝑖
𝑉𝑁𝐹 on the average 

packet delay to highlight its significance. Subsequently, we 

analyze the sensitivity of various parameters, including 𝜆, pN, 

𝑐𝑖
𝑉𝑁𝐹, and 𝐷𝑖

𝑆𝑉. 

  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

Fig. 2. Flowchart of the simulation process. 
 

C. Optimal Values of 𝑝𝑖
𝑉𝑁𝐹 

    Fig. 3 shows the impact of probabilities for routing packets 

to multiple VNFs (𝑝𝑖
𝑉𝑁𝐹) on average packet delay, considering 

k = 2. The plot depicts the relationship between 𝑝1
𝑉𝑁𝐹 , 𝑝2

𝑉𝑁𝐹 , 

and the average packet delay. Notably, our analytical results 

closely align with the simulation results, confirming the 

precision of our analytical model in replicating real-world 

scenarios. Optimal 𝑝𝑖
𝑉𝑁𝐹 values vary with the number of VNFs. 

Consequently, as k changes, 𝑝𝑖
𝑉𝑁𝐹 values also shift. We 

systematically varied 𝑝1
𝑉𝑁𝐹  from 0 to 1 while applying the same 

range to 𝑝2
𝑉𝑁𝐹, with the constraint that 𝑝1

𝑉𝑁𝐹 + 𝑝2
𝑉𝑁𝐹≤ 1. In this 

scenario, we assigned a low capacity of 95,000 packets/sec to 

𝑐1
𝑉𝑁𝐹 and a high capacity of 950,000 packets/sec to 𝑐2

𝑉𝑁𝐹. The 

average packet delay plot shows that when both 𝑝1
𝑉𝑁𝐹   and 

𝑝2
𝑉𝑁𝐹 are 0 (indicating no offloading to VNFs), severe 

congestion occurs in the PNF queue, leading to higher packet 

delays. As the probabilities of using VNFs (𝑝1
𝑉𝑁𝐹  and 𝑝2

𝑉𝑁𝐹 ) 

increase, average packet delay decreases. This is because 

offloading packets to VNFs reduces the load in the PNF queue, 

easing congestion. The lowest average packet delay (7.69 µs for 

the analytical model and 7.91 µs for the simulation) occurs 

when 𝑝1
𝑉𝑁𝐹 is 0.175810 and 𝑝2

𝑉𝑁𝐹 is 0.289530. 
 

TABLE III 
BASELINE PARAMETERS FOR THE ANALYSIS AND SIMULATION 

Symbol Value 

cSP 12,500,000 pkts/sec 

cSC 625,000 pkts/sec 

cPNF 125,000 pkts/sec 

  λ 125,000 pkts/sec 

  k 3 

𝑐1
𝑉𝑁𝐹 95,000 packets/sec 

𝑐2
𝑉𝑁𝐹 950,000 packets/sec 

𝑐3
𝑉𝑁𝐹 9,500,000 packets/sec 

𝑝𝑁                                0.5 

𝐷𝑖
𝑆𝑉 10 μs 

𝜀  10−6 

𝑝𝑁 0.5 

stepRF 10 

 

 
Fig. 3.  Impact of 𝑝𝑖

𝑉𝑁𝐹on the average packet delay. 

 

    Additionally, it is observed that 𝑝2
∗𝑉𝑁𝐹 is higher than 𝑝1

∗𝑉𝑁𝐹. 

This discrepancy arises due to the different VNF service rates 

(𝑐𝑖
𝑉𝑁𝐹) for each VNF queue. A higher 𝑐𝑖

𝑉𝑁𝐹value results in a 

reduced average delay for packets requiring VNF processing. 

Consequently, higher 𝑐𝑖
𝑉𝑁𝐹 values lead to higher 𝑝𝑖

∗𝑉𝑁𝐹   values, 

as sending more packets to the VNF queues becomes more 

advantageous. 

    Beyond a certain threshold, as 𝑝1
𝑉𝑁𝐹 and 𝑝2

𝑉𝑁𝐹 increase, the 

average packet delay again tends to increase. This is due to the 

increased number of packets routed through VNFs, which 

introduces additional overhead and consequently leads to 

higher delays associated with processing packets through 

multiple VNFs. 

    In the following results, we investigate the sensitivity of 

various parameters for k = 3. We examine the impact of 

offloading packets from the P4 switch to multiple VNFs, 

considering aspects such as 𝜆, 𝑝𝑁 , 𝑐𝑖
𝑉𝑁𝐹 , and 𝐷𝑖

𝑆𝑉 . Our study 

offers valuable insights and recommendations for service 

providers dealing with latency issues and tackling design and 
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service administration challenges when utilizing multiple VNFs 

with distinct service rates for each VNF queue. 

    To facilitate the comparison and analysis of the impact of 

different numbers of VNFs on the average packet delay, we 

denote the average packet delay for k = 1 as delay_k(1) and for 

k = 3 as delay_k(3). 

D. Impact of Packet Arrival Rate, λ 

    Fig. 4 demonstrates the relationship between the arrival rate 

(λ) and the optimal offloading probabilities (𝑝𝑖
∗𝑉𝑁𝐹) as well as 

the average packet delay. The results obtained from both the 

analytical model and simulation align closely. In Fig. 5, we 

compare the packet delay when using a single VNF versus using 

multiple VNFs. 

    As shown in Fig. 4, an increase in λ leads to a significant 

increase in 𝑝𝑖
∗𝑉𝑁𝐹, causing more packets to be offloaded to all 

three VNFs based on their VNF service rates (𝑐𝑖
𝑉𝑁𝐹). This is 

because, as λ increases, the packet delay for packets requiring 

PNF increases at a faster rate compared to the packet delay for 

packets requiring VNFs (as shown in Fig. 6 and will be 

explained later). Consequently, it becomes more advantageous 

to offload a greater portion of packets to VNFs, resulting in 

higher offloading probabilities for all three VNFs. When 

network traffic is low, offloading packets to VNFs may not 

provide significant benefits since the PNF can handle incoming 

packets without congestion. However, as network traffic load 

increases, it becomes more advantageous to offload packets to 

VNFs to alleviate congestion at the PNF queue. In summary, 

the optimal offloading probabilities (𝑝𝑖
∗𝑉𝑁𝐹) and average packet 

delay are influenced by the packet arrival rate (λ). With 

increasing λ, 𝑝𝑖
∗𝑉𝑁𝐹  increases notably as more packets are 

offloaded to VNFs to prevent congestion at the PNF queue. 

However, there comes a point where the slope of the curve starts 

to decrease, indicating diminishing returns from further 

offloading. This occurs because excessively offloading packets 

to VNFs can lead to congestion at the VNF queues, reducing 

the benefits of offloading. Overall, it is more effective to offload 

packets to VNFs as the load at the PNF queue increases. 

 

 
Fig. 4. Impact of arrival rate, λ on delay and offloading probability for k=3. 
     

Fig. 4 also reveals that the values of 𝑝2
∗𝑉𝑁𝐹  and 𝑝3

∗𝑉𝑁𝐹 are 

higher than that of 𝑝1
∗𝑉𝑁𝐹. This is due to the higher VNF service 

rates (𝑐2
𝑉𝑁𝐹 and 𝑐3

𝑉𝑁𝐹) compared to 𝑐1
𝑉𝑁𝐹. Additionally, the gap 

between 𝑝2
∗𝑉𝑁𝐹 and 𝑝3

∗𝑉𝑁𝐹   is relatively smaller, indicating that 

a significant increase in VNF capacity does not yield substantial 

improvements in the optimal probability of going to VNFs and 

average delay beyond a certain point. Therefore, it is important 

to choose the VNF service capacity appropriately. 
 

 
Fig. 5. Impact of arrival rate, λ on average packet delay for k = 1 and k = 3. 

 

Additionally, in Fig. 5 we observe that the total average 

packet delay decreases as the number of VNFs used in the 

system increases. This is because offloading packets to multiple 

VNFs reduces the load on individual VNFs and the PNF, 

resulting in reduced packet delays. Interestingly, as the number 

of VNFs increases, the optimal probabilities for routing packets 

to each VNF (𝑝𝑖
∗𝑉𝑁𝐹) shift toward a more balanced distribution. 

This balanced distribution allows for a more even workload 

distribution among different VNFs, leading to decreased load 

on each VNF and an overall improvement in system 

performance. However, it's essential to consider that a higher 

number of VNFs also introduces added complexity and costs to 

the system. Thus, maintaining a balance between system 

performance and cost becomes crucial. 
 

 
Fig. 6. Impact of arrival rate, λ on packet delay on different paths for k = 3.     
 

In Fig. 6, we can see the impact of λ on the average packet 

delay for packets passing through all three VNFs (VNF1, VNF2, 

and VNF3), PNF, and those that do not require any network 

function. Since our analytical result matches with our 

simulation result precisely, we present the graph for analytical 

analysis only. The delays for each type of packet are labeled as 

VNF1_delay, VNF2_delay, VNF3_delay, PNF_delay, and 

non_delay. We can observe that as λ increases, packet delay 

increases for all types of packets. This is because the higher 

arrival rate leads to increased congestion in all the queues, 

resulting in more extensive delays. Notably, the slopes of 

packet delays differ as λ increases. The delay for packets that 

do not require any network function remains almost stable. On 
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the other hand, packet delays for VNF1, VNF2 and VNF3 exhibit 

gradual increases, while the delay for PNF escalates at a faster 

rate. This discrepancy arises from the heavier load on the PNF 

queue compared to the queues of the VNFs. Multiple VNFs 

introduce additional propagation delay between the switch and 

VNFs, contributing to the higher delay observed in the PNF 

queue. 

    Once the packet arrival rate exceeds a certain point (160,000 

pkts/sec), the delay for PNF increases notably due to the heavy 

load, while the delay for VNF increases only slightly due to the 

light load. Additionally, the delay for VNF1 is much higher than 

that of VNF2 and VNF3 because the service rates of VNF2 and 

VNF3 are higher than that of VNF1. The gap between 

VNF2_delay and VNF3_delay is smaller for the same reason. 

    The analytical result indicates that the packet delays for all 

three VNFs are significantly higher than that of PNF due to the 

longer path that packets requiring VNF must travel (as shown 

in (7) and (10)). This difference in delay also results from the 

additional propagation delay that packets experience between 

the switch and VNFs. 

E. Impact of 𝑝𝑁 

Fig. 7 shows the impact of the probability of requiring a 

network function (𝑝𝑁) on both the average packet delay and the 

optimal offloading probability. As the percentage of packets 

requiring a network function (𝑝𝑁) increases, the average packet 

delay also increases. This is because more packets require 

network functions, leading to higher loads on both the PNF and 

VNFs. 

 
Fig. 7.  Impact of 𝑝𝑁on delay and offloading probability for k = 3. 

 

Additionally, we observe that as 𝑝𝑁  increases, the optimal 

probabilities of packets offloaded to multiple VNFs 

(𝑝1
∗𝑉𝑁𝐹 , 𝑝2

∗𝑉𝑁𝐹, and  𝑝3
∗𝑉𝑁𝐹)  also increase. This is due to the fact 

that the service rate of the PNF (cPNF) is much lower than that 

of the VNFs (𝑐1
𝑉𝑁𝐹 , 𝑐2

𝑉𝑁𝐹  , and 𝑐3
𝑉𝑁𝐹) (as shown in Table III). As 

𝑝𝑁 increases, the average delay for packets requiring the PNF 

increases faster than packets requiring multiple VNFs. 

Therefore, offloading more packets to multiple VNFs helps to 

reduce the average packet delay. Furthermore, the probabilities  

of offloading to VNFs vary due to the differences in their 

service rates (𝑐1
𝑉𝑁𝐹 , 𝑐2

𝑉𝑁𝐹  , and 𝑐3
𝑉𝑁𝐹 ), with 𝑝2

∗𝑉𝑁𝐹  and  𝑝3
∗𝑉𝑁𝐹  

being greater than 𝑝1
∗𝑉𝑁𝐹 . Importantly, this difference is not 

affected by 𝑝𝑁 as it is independent of this parameter. Therefore, 

the gap between the probabilities of going to VNFs (𝑝1
∗𝑉𝑁𝐹 ,  

𝑝2
∗𝑉𝑁𝐹 , and 𝑝3

∗𝑉𝑁𝐹) is fixed, regardless of the chosen 𝑝𝑁  . This 

gap is solely attributed to the varying VNF service rates (𝑐1
𝑉𝑁𝐹 ,

𝑐2
𝑉𝑁𝐹  , 𝑎𝑛𝑑 𝑐3

𝑉𝑁𝐹). 

F. Impact of 𝑐1
𝑉𝑁𝐹 

Fig. 8 illustrates the impact of VNF service rate (𝑐1
𝑉𝑁𝐹) on 

average packet delay and optimal offloading probabilities 

(𝑝1
∗𝑉𝑁𝐹 ,   𝑝2

∗𝑉𝑁𝐹  , and 𝑝3
∗𝑉𝑁𝐹 ). As 𝑐1

𝑉𝑁𝐹  increases, the packet 

delay for packets requiring multiple VNFs decreases, leading to 

an overall reduction in total average packet delay. Additionally, 

the increase in 𝑐1
𝑉𝑁𝐹  initially raises all three optimal 

probabilities (𝑝1
∗𝑉𝑁𝐹 ,  𝑝2

∗𝑉𝑁𝐹  and 𝑝3
∗𝑉𝑁𝐹 ), as it becomes more 

advantageous to direct more packets to multiple VNFs. 

    Increasing the capacity of 𝑐1
𝑉𝑁𝐹  from 95,000 (pkts/sec) to 

950,000 (pkts/sec) results in higher values for 𝑝𝑖
∗𝑉𝑁𝐹 , and the 

gap between 𝑝1
∗𝑉𝑁𝐹  𝑎𝑛𝑑 𝑝2

∗𝑉𝑁𝐹   decreases. Interestingly, when 

𝑐1
𝑉𝑁𝐹 = 𝑐2

𝑉𝑁𝐹 =950,000 pkts/sec, both VNFs have identical 

optimal probabilities for directing packets to VNFs, making 

𝑝1
∗𝑉𝑁𝐹  equal to 𝑝2

∗𝑉𝑁𝐹 . 

    However, beyond a certain point, further increases in 𝑐1
𝑉𝑁𝐹 

result in an increase only in 𝑝1
∗𝑉𝑁𝐹 , while the values of 𝑝2

∗𝑉𝑁𝐹 

and 𝑝3
∗𝑉𝑁𝐹 decrease. This phenomenon can be attributed to the 

fact that at higher values of 𝑐1
𝑉𝑁𝐹, the advantages of offloading 

more packets to VNF1 become more beneficial, leading to a 

reduction in the optimal probabilities of routing packets to 

VNF2 and VNF3. 
 

 

Fig. 8.  Impact of 𝑐1
𝑉𝑁𝐹on delay and offloading probability for k = 3. 

 

G. Impact of 𝐷𝑖
𝑆𝑉 

Fig. 9 illustrates how increasing the fixed propagation delay 

( 𝐷𝑖
𝑆𝑉 ), impacts the average packet delay and the optimal 

offloading probabilities ( 𝑝1
∗𝑉𝑁𝐹 ,   𝑝2

∗𝑉𝑁𝐹 , 𝑝3
∗𝑉𝑁𝐹 ). As 𝐷𝑖

𝑆𝑉 

increases, the average packet delay also increases because 

packets experience longer propagation delays to reach multiple 

VNFs. This phenomenon occurs because the benefits of 

offloading decrease as the fixed propagation delay becomes 

larger. Offloaded packets experience more delay due to the 

longer path they have to travel to reach multiple VNFs. As a 

result, the optimal offloading probabilities decrease to minimize 

the overall packet delay. 

    In summary, increase of fixed propagation delay results in 

higher average packet delays. It also decreases the optimal 

probabilities of offloading packets to VNFs. This information 

is crucial for network administrators and service providers to 

understand the trade-offs between fixed propagation delay, 

offloading probabilities, and overall system performance. 
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Fig. 9.  Impact of 𝐷𝑖

𝑆𝑉 on delay and offloading probability for k = 3. 

 

As explained earlier, the optimal probabilities of offloading 

packets to VNFs ( 𝑝1
∗𝑉𝑁𝐹 ,  𝑝2

∗𝑉𝑁𝐹 , and 𝑝3
∗𝑉𝑁𝐹 ) differ due to 

variations in VNF service rates ( 𝑐1
𝑉𝑁𝐹 , 𝑐2

𝑉𝑁𝐹  , 𝑎𝑛𝑑 𝑐3
𝑉𝑁𝐹 ). 

Irrespective of the value of 𝐷𝑖
𝑆𝑉, this gap between probabilities 

remains constant because packet arrival rates and other 

parameters remain consistent. Thus, the gap is solely 

determined by the use of distinct VNF service rates and remains 

unaffected by changes in 𝐷𝑖
𝑆𝑉. 

VI. CONCLUSION 

     In this paper, we have introduced an integration of multiple 

virtual network functions (VNFs) within a P4 switch, aiming to 

determine the optimal probabilities for directing packets to 

VNFs and ultimately minimizing the average packet delay. Our 

investigation encompassed various VNF computing capacities, 

allowing for a comprehensive comparison of their respective 

optimal offloading probabilities and their effects on 

performance metrics. To assess the average packet delay, we 

employed the M/M/1 queuing model. Also, we proposed an 

optimization solution based on gradient descent to find the 

optimal offloading probabilities for various VNF servers. 

     The study highlights the importance of VNF server 

computing capacities in determining the optimal offloading 

probabilities. Servers with larger computing capacities can 

process more packets, consequently yielding higher optimal 

offloading probabilities. Integrating more VNFs into the system 

reduces overall average packet delay. This is because by 

distributing packets among multiple VNFs, we can reduce 

workload on individual VNFs and the PNF. However, 

increasing the number of VNFs also increases system 

complexity and cost, which should be taken into consideration. 

The research findings demonstrate that optimal offloading from 

a P4 switch to three VNFs can yield reductions in average 

packet delay ranging from 4.76% to 40.02% when compared to 

a single VNF scenario. With the exception of 𝐷𝑖
𝑆𝑉, when other 

parameters (λ, 𝑝𝑁 , 𝑐𝑖
𝑉𝑁𝐹 ) increase, the average packet delay 

also increases, leading to the need for higher offloading 

probabilities. This trend aligns with the idea that offloading a 

greater number of packets to multiple VNFs can effectively 

mitigate packet delay. In conclusion, the study provides 

valuable insights for enhancing system performance, 

emphasizing the importance of considering VNF computing 

capacities and offloading probabilities.  

    This model provides a mathematical framework for 

analyzing multiple VNF queues with Poisson arrivals, 

exponentially distributed service times, and a single server. 

Recognizing the potential impact of different packet arrival 

distributions on results, we plan to explore alternative 

distributions in our future work. 
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